Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain.

Identifieur interne : 000010 ( Main/Exploration ); précédent : 000009; suivant : 000011

Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain.

Auteurs : Gyeong Joon Moon [Corée du Sud] ; Minsang Shin [Corée du Sud] ; Sang Ryong Kim [Corée du Sud]

Source :

RBID : pubmed:32188096

Abstract

Ras homolog protein enriched in brain (Rheb) is a key activator of mammalian target of rapamycin complex 1 (mTORC1). The activation of mTORC1 by Rheb is associated with various processes such as protein synthesis, neuronal growth, differentiation, axonal regeneration, energy homeostasis, autophagy, and amino acid uptake. In addition, Rheb-mTORC1 signaling plays a crucial role in preventing the neurodegeneration of hippocampal neurons in the adult brain. Increasing evidence suggests that the constitutive activation of Rheb has beneficial effects against neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our recent studies revealed that adeno-associated virus serotype 1 (AAV1) transduction with Rheb(S16H), a constitutively active form of Rheb, exhibits neuroprotective properties through the induction of various neurotrophic factors, promoting neurotrophic interactions between neurons and astrocytes in the hippocampus of the adult brain. This review provides compelling evidence for the therapeutic potential of AAV1-Rheb(S16H) transduction in the hippocampus of the adult brain by exploring its neuroprotective effects and mechanisms.

DOI: 10.3390/ijms21062023
PubMed: 32188096
PubMed Central: PMC7139780


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain.</title>
<author>
<name sortKey="Moon, Gyeong Joon" sort="Moon, Gyeong Joon" uniqKey="Moon G" first="Gyeong Joon" last="Moon">Gyeong Joon Moon</name>
<affiliation wicri:level="1">
<nlm:affiliation>BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shin, Minsang" sort="Shin, Minsang" uniqKey="Shin M" first="Minsang" last="Shin">Minsang Shin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944</wicri:regionArea>
<wicri:noRegion>Daegu 41944</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Sang Ryong" sort="Kim, Sang Ryong" uniqKey="Kim S" first="Sang Ryong" last="Kim">Sang Ryong Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32188096</idno>
<idno type="pmid">32188096</idno>
<idno type="doi">10.3390/ijms21062023</idno>
<idno type="pmc">PMC7139780</idno>
<idno type="wicri:Area/Main/Corpus">000100</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000100</idno>
<idno type="wicri:Area/Main/Curation">000100</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000100</idno>
<idno type="wicri:Area/Main/Exploration">000100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain.</title>
<author>
<name sortKey="Moon, Gyeong Joon" sort="Moon, Gyeong Joon" uniqKey="Moon G" first="Gyeong Joon" last="Moon">Gyeong Joon Moon</name>
<affiliation wicri:level="1">
<nlm:affiliation>BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shin, Minsang" sort="Shin, Minsang" uniqKey="Shin M" first="Minsang" last="Shin">Minsang Shin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944</wicri:regionArea>
<wicri:noRegion>Daegu 41944</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Sang Ryong" sort="Kim, Sang Ryong" uniqKey="Kim S" first="Sang Ryong" last="Kim">Sang Ryong Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566</wicri:regionArea>
<wicri:noRegion>Daegu 41566</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ras homolog protein enriched in brain (Rheb) is a key activator of mammalian target of rapamycin complex 1 (mTORC1). The activation of mTORC1 by Rheb is associated with various processes such as protein synthesis, neuronal growth, differentiation, axonal regeneration, energy homeostasis, autophagy, and amino acid uptake. In addition, Rheb-mTORC1 signaling plays a crucial role in preventing the neurodegeneration of hippocampal neurons in the adult brain. Increasing evidence suggests that the constitutive activation of Rheb has beneficial effects against neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our recent studies revealed that adeno-associated virus serotype 1 (AAV1) transduction with Rheb(S16H), a constitutively active form of Rheb, exhibits neuroprotective properties through the induction of various neurotrophic factors, promoting neurotrophic interactions between neurons and astrocytes in the hippocampus of the adult brain. This review provides compelling evidence for the therapeutic potential of AAV1-Rheb(S16H) transduction in the hippocampus of the adult brain by exploring its neuroprotective effects and mechanisms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32188096</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E2023</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms21062023</ELocationID>
<Abstract>
<AbstractText>Ras homolog protein enriched in brain (Rheb) is a key activator of mammalian target of rapamycin complex 1 (mTORC1). The activation of mTORC1 by Rheb is associated with various processes such as protein synthesis, neuronal growth, differentiation, axonal regeneration, energy homeostasis, autophagy, and amino acid uptake. In addition, Rheb-mTORC1 signaling plays a crucial role in preventing the neurodegeneration of hippocampal neurons in the adult brain. Increasing evidence suggests that the constitutive activation of Rheb has beneficial effects against neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our recent studies revealed that adeno-associated virus serotype 1 (AAV1) transduction with Rheb(S16H), a constitutively active form of Rheb, exhibits neuroprotective properties through the induction of various neurotrophic factors, promoting neurotrophic interactions between neurons and astrocytes in the hippocampus of the adult brain. This review provides compelling evidence for the therapeutic potential of AAV1-Rheb(S16H) transduction in the hippocampus of the adult brain by exploring its neuroprotective effects and mechanisms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moon</LastName>
<ForeName>Gyeong Joon</ForeName>
<Initials>GJ</Initials>
<Identifier Source="ORCID">0000-0002-2851-9563</Identifier>
<AffiliationInfo>
<Affiliation>BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shin</LastName>
<ForeName>Minsang</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Sang Ryong</ForeName>
<Initials>SR</Initials>
<Identifier Source="ORCID">0000-0003-0299-1613</Identifier>
<AffiliationInfo>
<Affiliation>BK21 plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Alzheimer’s disease</Keyword>
<Keyword MajorTopicYN="N">Rheb(S16H)</Keyword>
<Keyword MajorTopicYN="N">neurotrophic factor</Keyword>
<Keyword MajorTopicYN="N">neurotrophic interaction</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32188096</ArticleId>
<ArticleId IdType="pii">ijms21062023</ArticleId>
<ArticleId IdType="doi">10.3390/ijms21062023</ArticleId>
<ArticleId IdType="pmc">PMC7139780</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Hum Mol Genet. 2015 Oct 15;24(20):5746-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26220974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Apr 1;15(7):807-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 2;289(18):12195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24648513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Oct 6;314(5796):144-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17023663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Results Probl Cell Differ. 2009;48:269-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2015 Mar;23(3):445-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25502903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Genet. 1993 Jan;30(1):41-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8423606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Alzheimer Res. 2014 Jan;11(1):27-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24251394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Learn Mem. 2012 Jan;97(1):105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Sep 15;22(18):2485-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Apr 24;173(2):279-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16636147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Nov;58(4):1074-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2002 Nov 1;70(3):519-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12391613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Sep 1;116(Pt 17):3601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2015 Aug 5;35(31):11068-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26245968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2001 Jan;63(1):71-124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11040419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2011 Jul;70(1):110-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21437936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2010 Jun 2;30(22):7516-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Oct;1834(10):2205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23085183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Feb 13;156(4):786-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24529380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8923-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2005 Mar;137(3):423-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Feb 28;289(9):5799-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24368770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2014;38(2):437-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23979023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2014 Mar 26;34(13):4453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24671992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2016 Nov 15;143(22):4224-4235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27707798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 May 31;288(22):15556-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23585566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2015 May;125(5):1873-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25822020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med Rep. 2013 Feb;7(2):623-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23165862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Nov 26;274(48):34493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 21;281(29):19793-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16728407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Neurosci. 2010 May;44(1):43-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Psychiatry. 2016 Oct 4;6(10):e907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27701410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 23;10(3):e0121803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25799580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2014 Aug;62(8):1227-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2008 Sep 25;27(43):5729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18521078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2008 Sep;31(3):316-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18585459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jun 23;4(6):e6007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19547753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurol. 2009 Jun;5(6):311-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19498435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Jan;1784(1):116-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17913600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2005 Jul;194(1):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15899246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Rep. 2015 Mar;3(2):137-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25798236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 29;280(17):17093-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Aging. 2017 Feb;50:134-143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27960107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2002 Nov 1;22(21):9228-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Sep;24(18):7965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15340059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Aug 8;8(1):11861</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30089897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2009;18(2):331-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurosci. 2017 Sep 04;11:451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28928628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2010 Dec;33(12):541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20947179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Plast. 2012;2012:486402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22619737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Dec;8(12):1727-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CNS Neurosci Ther. 2014 Nov;20(11):961-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25119316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Alzheimers Dement. 2013 Jan;9(1):63-75.e2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23305823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2015 Jul 20;6(20):17895-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26255626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Aug 5;13(15):1259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2010 Feb;13(2):163-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20062052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2010 Mar;13(3):302-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20173744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2020 Feb;177(3):668-686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31658360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2013 May 15;22(10):2010-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23393158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2015 Dec;138(Pt 12):3610-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26490328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2015 Jan 21;85(2):303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25556834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2018 Jan 1;1678:310-321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29106947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurosci. 2016 Feb 09;10:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26903794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Med. 2018 Feb 9;50(2):e440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29422542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Feb 6;33(6):2419-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23392671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Alzheimer Res. 2007 Dec;4(5):503-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18220511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2015 Oct;95(4):1157-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26269525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jun 13;289(24):16773-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24808182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2013 May;138(2):155-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23348013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 9;431(7005):195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 2014 Jan;76 Pt C:664-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Pathol. 1991 Apr;1(3):213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1669710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Mol Brain Res. 1996 Mar;36(2):280-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8965648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2006 Dec;34(3):205-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17308353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Brain Behav. 2008 Feb;7 Suppl 1:43-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18184369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2005 Oct;11(5):400-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2012 Oct 01;4(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22983160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2004 Oct;16(10):1105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Neuroanat. 2001 Jun;21(4):277-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11429269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1999;68:913-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2014 Oct 22;84(2):275-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25374355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):679-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ageing Res Rev. 2014 Mar;14:31-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24495392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Feb 13;156(4):771-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24529379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Regen Res. 2017 Apr;12(4):549-557</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28553325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2012 Feb;20(2):275-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22008911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1994 Feb;35(2):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8109896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2014 Jan;112:24-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24211851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 May 21;260(5111):1130-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8493557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3896-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16505355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Neurobiol. 2015 Apr;51(2):487-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24859383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Learn Mem. 2013 Mar;101:94-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23357282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2015 Jun 3;35(22):8384-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26041908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2003 Mar 1;23(5):1974-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12629203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Med. 2019 Nov 22;8(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31766645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1457-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jul;1853(7):1646-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25791428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2013 Aug;246:44-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22721767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2006 Sep;6(9):729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Aug 1;17(15):1829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Learn Mem. 2013 Sep 16;20(10):518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24042848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2013 Aug;41(4):951-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23863162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2004 Jun;89(5):1092-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Mol Biol Transl Sci. 2014;122:131-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24484700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2013 Nov 15;191(10):5204-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24089194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2010;21(4):1185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20952820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 1997 Aug;282(2):760-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9262339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Jan;37(1):19-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15624019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2013 Sep 5;1529:66-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23895766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2014 Jul 1;193(1):139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24860191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharm Acta Helv. 2000 Mar;74(2-3):265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10812968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Dev. 2015 Feb 25;10:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25886013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 29;278(35):32493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12842888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cereb Blood Flow Metab. 2000 Jul;20(7):1040-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2015 Sep 24;1621:82-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25451089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropsychiatr Dis Treat. 2015 Apr 09;11:1015-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25914534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 May 1;33(18):7799-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23637172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 1996 Jun 21;211(2):81-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Neurol. 2018 Sep;17(9):802-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30129476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2014 Sep 24;34(39):13127-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Learn Mem. 2008 Mar;89(3):312-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2013 Feb;28:25-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23361334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Jun;5(6):578-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12771962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuromolecular Med. 2011 Dec;13(4):217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21898045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1991 Nov;7(5):695-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1742020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Neurosci. 2011;34:185-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21456963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2002 Apr;174(2):243-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11922665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Neurol. 2000 Jun;57(6):846-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10867782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropharmacology. 2014 Jun;81:55-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24486380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2011 Feb 08;2:189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21304518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Rev. 2003 Dec;61(12):423-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14968912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2002 Jun 25;58(12):1791-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 28;283(48):33784-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2012 Aug 15;32(33):11441-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22895726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2011 Feb-Mar;46(2-3):155-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20849946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1996 Oct 14;736(1-2):99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8930314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Neurosci. 2018 Feb 07;12:52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29467613</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Moon, Gyeong Joon" sort="Moon, Gyeong Joon" uniqKey="Moon G" first="Gyeong Joon" last="Moon">Gyeong Joon Moon</name>
</noRegion>
<name sortKey="Kim, Sang Ryong" sort="Kim, Sang Ryong" uniqKey="Kim S" first="Sang Ryong" last="Kim">Sang Ryong Kim</name>
<name sortKey="Kim, Sang Ryong" sort="Kim, Sang Ryong" uniqKey="Kim S" first="Sang Ryong" last="Kim">Sang Ryong Kim</name>
<name sortKey="Shin, Minsang" sort="Shin, Minsang" uniqKey="Shin M" first="Minsang" last="Shin">Minsang Shin</name>
<name sortKey="Shin, Minsang" sort="Shin, Minsang" uniqKey="Shin M" first="Minsang" last="Shin">Minsang Shin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000010 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000010 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32188096
   |texte=   Upregulation of Neuronal Rheb(S16H) for Hippocampal Protection in the Adult Brain.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32188096" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020